
Improving web app 
with 

Rust and WebAssembly

ILYA BARYSHNIKOV

2019.04.20

ABOUT ME

- I work in Align Technology
- previously, JavaScript developer
- I use Rust and WebAssembly at work

WE USE RUST AND WEBASSEMBLY

DON’T NOT BREAK

LIGHTS

DATA DESCRIPTION

In: 3 arrays, 60 000 total
length
Out: 2 arrays, 30 000 total
length

WHAT I MEASURED

JS: computation
WASM: computation + data transfer
overhead

WHAT I MEASURED

JS: computation
WASM: computation + data transfer overhead

Looks unfair…

WHAT I MEASURED

JS: computation
WASM: computation + data transfer overhead

Looks unfair… but still faster!

PERFORMANCE GAINS

x2 x1.3
development build production build

PERFORMANCE GAINS

- Most desktop browsers are around x1.3
- Safari on ipad is x0.8
- Edge is x6

HOW TO IMPROVE

- Keep state on the wasm side
- Create JS typed arrays directly from WebAssembly

memory

But it’s a small case,  
it takes only 2ms

SELECTING OBJECTS

- Time limit per frame is 16ms
- Selection takes 4ms
- It’s 25% of time!

REAL IMPACT

- Better FPS in some cases
- Less GC
- Deliver more features!

DOWNSIDES

- Higher complexity
- Browser support

wasm2js

wasm-pack

QUALITY CONTROL

- wasm-pack test

QUALITY CONTROL

- wasm-pack test
- cargo test

QUALITY CONTROL

- wasm-pack test
- cargo test
- cargo2junit

QUALITY CONTROL

- wasm-pack test
- cargo test
- cargo2junit
- cargo-audit

QUALITY CONTROL

- wasm-pack test
- cargo test
- cargo2junit
- cargo-audit
- headless_chrome

FUTURE

- better wasm2js
- gloo – modular web toolkit  

- wasm-bindgen and stdweb compatibility,  
initial support released a few days ago! 

- Web IDL Bindings proposal
- WASI (WebAssembly System Interface)

Thanks
!

Links:

