Getting Started with
Substrate

Gautam Dhameja
Solutions Architect @ Parity
@gautamdhameja

curl https://getsubstrate.io -sSf | bash -s -- --fast

What is Substrate?

Substrate is an
, , and
framework
for building blockchains.

.

What is Substrate?

Substrate provides all the core
components of a Blockchain:

Database Layer

Networking Layer
Consensus Engine
Transaction Queue

Library of Runtime Modules

.

\\

=
7

W

“parity

What is a Runtime?

RUNTIME

system assets

The runtime is the

sudo aura indices

Of .the consensus finality-tracker

timestamp balances

blockchain, i.e. the State

Transition FU nCtion . Substrate Runtime Module Library (SRML)

assets “ balances consensus

It |S CO m posed Of contract council democracy treasury

session staking

Runtime Module

A runtime module packages together ST P T Ve

Non-Dispatchable Functions
(public or private)

to support a certain set of features for a
runtime.

Eg: The Module in SRML is for creating and managing fungible assets.

®

> parity

Setup and Installation

L

> parity

Installation

Install dependencies + Substrate node:

Install only dependencies:

)

Z //5/
%4
{,7//

parity

Bootstrapping the runtime

Create a new template runtime:

Downloads the
substrate-node-template
codebase

Compiles it for Wasm and Native
environments

Provides a hack ready Substrate

node

parity

$ git clone https://github.com/shawntabrizi/substrate-package

$ cd substrate-package

$./substrate-package-rename.sh substratekitties <your name>

S cd substratekitties

$./init.sh

Substrate Node Template

e A working substrate node
e Includes from SRML
o Accounts, Balances, Fees,
Runtime Upgrades, and
more...
e FEasily add and remove modules
from the SRML
e Create your own modules to
customize your chain functionality

> runtime

b src

b Larget

© .gitignore

® build.rs

B build.sh
Cargo.lock

£ Cargo.toml

B init.sh
LICENSE

® README.md

L

7
7

é’parify

$./build.sh

Developing a Module

\

> parity

Skeleton of a Module

use support::{decl module, decl storage, decl event,...};

pub trait Trait: system::Trait {...}
decl storage! {...} // storage
decl event! {...} // events

decl module! {...} // dispatchable calls

impl<T: Trait> Module<T> {...} // non-dispatchable functions

Macros

decl storage! decl module! decl event!

e Rust code which can generate more code
e Used to simplify the creation of modules

e Generate types and traits used by the runtime

Designing the runtime - Storage

e On-chain or not?
e Simple data structures
e Resource efficient state changes

e Complex data structures lead to complex logic

\\

=
_

W

“parity

Declaring Storage

decl storage! {

trait Store for Module<T: Trait> as TemplateModule {
// Here we are declaring a StorageValue, "~ SomeValue as a u32
// "~get (some value) defines a getter function
// Getter called with "Self::some value()

SomeValue get (some value): u32;

// Here we are declaring a StorageMap from an AccountId to a Hash
// Getter called with "Self::some map (account id) "

SomeMap get (some map): map T::AccountlId => u32;

~parity

Designing the runtime - Events

e No success return values
e Communicate state changes

e Business events vs. System events

\\

=
_

W

“parity

Declaring Events

decl event! (
pub enum Event<T>

where

<T as system::Trait>::AccountId

// Event “ValueStored® deposits values of type

ValueStored (AccountId, u32),

"AccountId’

and

"u32°

7
7

parity

Implementing the runtime logic

e Validate - check all conditions on input
e Update - write to storage

e Communicate - emit events

e 0Ok(()

\\

=
_

W

“parity

Declaring Dispatchable Functions

decl module! {

pub struct Module<T: Trait> for enum Call where origin: T::0rigin {

fn deposit event<T>() = default; // The default deposit event definition
pub fn store value (origin, input: u32) -> Result ({
let sender = ensure signed (origin)?; // Check for transaction

<SomeMap<T>>:: insert (sender, input); // Insert key/value in StorageMap
Self::deposit event (RawEvent::ValueStored (sender, input)); // Emit

Event

Ok(()) // Return Ok at the end of a function

IS

7

~ parity

Declaring Public and Private Functions

impl<T: Trait> Module<T> {
fn mint (to: T::AccountId, id: T::Hash) -> Result { }
pub fn transfer (from: T::AccountId, to: T::AccountlId, id: T::Hash)

-> Result { }

These can also be called from other modules if marked

public.

$ cargo build --release

Best Practices

\

> parity

Best Practices

e Never panic!

o Handle errors gracefully.
e Verify first, commit last

o Thereis no revert like in smart contracts.
e Resources used - Price paid

o Optimize storage and logic.

parity

Handling Errors in Your Runtime

e Your Runtime should panic:
o An unrecoverable error in Rust, which immediately terminates the thread
e Instead, you must perform “safe” operations which explicitly handles errors

e For example, safe math:

let a = u8::max value() + 1;

let a = u8::max value () .checked add(1l) .ok or("Overflow!");

Option Instead of Null

Options let you be explicit

about variables having some

enum Option<T> {

Some (T) ,
or no value None,
}
let a = u8::max value () .checked add(1)
a == None
let b = u8::max value () .checked sub (1)

D ==

Some (254)

Result Instead of Panic

Result is a richer version of
enum Result<T, E> {

Option that describes
Ok (T),
possible error instead of Err (E),

possible absence. }

pub type Result = result::Result< (), &'static str>;

Verify First, Write Last

e A “bad transaction” does not work the same as Ethereum

e Ethereum: State is reverted, storage is untouched, and a fee is paid

e Substrate: State changes will persist if an "Err’ is returned

e Needed for situations like:
o Increasing Account transaction nonce, even with failed transactions
o Charging transaction fees even when “out of gas”

e Need to be conscious of this pattern when making “sub-functions”

Resources

Substrate Collectables Workshop

=> Run a local Substrate node
-> Learn about runtime
development and best
practices

Build a working chain with Ul
Minimal Rust Experience

v ¥

Kitty by David Revoy

tiny.cc/substrate-workshop

Next Steps For You!

v

Clone and follow instruction from the Substrate Package

>

Join and ask questions in the Substrate Technical channel on Riot
>

Explore and read the Substrate Runtime Module Library

>

BUILD ON SUBSTRATE!

http://tiny.cc/substrate-package
http://tiny.cc/substrate-technical
http://tiny.cc/substrate-srml

Questions?

http://tiny.cc/substrate-technical

