
Distributed Actor System in Rust
Zimon Dai

About me

• Zimon Dai

• Senior Engineer @ Alibaba Inc

• Full-time Rust dev since 2016

• daizhuoxian@outlook.com

mailto:daizhuoxian@outlook.com

This talk is not about

• Details of full featured actor system

• Comparison with other popular actor systems (Actix, etc.)

• Feature introduction of any crate

This talk is about

• How to solve common problems when building an actor
system in Rust

• Compilation-stable type id

• Proc macros

• Specialization

• Tick-Based actor system

The Type-id Problem

Broker BBroker A

Messages

Actor BActor A

BUFFER Messages

The Type-id Problem

• Messages need to be encoded into buffers (Vec<u8>) so
they could be transferred in a network

• How could a receiver actor recover the type information of
a message?

Give each message payload type a Type Id

Type id

• Type ID needs to be stable across the network, or it could
lead to decoding error

• We could not use std::any::TypeId

• It generates different type ids with each compilation

• Network could be running software from different
compilations

Proc Macro to the Rescue

• Get the ident of target struct payload

• Save the ident + id combo to a local file

• Read the file on next compilation to recover the type id

The payload struct we need to assign a unique type id to

Load id from local file

Type Id

• Once we get a stable type id, we could use it to erase /
recover type information for networking

• T ———(serialization)——— Vec<u8>

• &[u8] ——— (Type Id matching deserialization) ——— T

This is more or less similar to Reflection in Java

You still need to match against all types !

Solve it with proc
macros (again…)

Need declarations of message types

Using proc macros we get:

• A super clean, self-explaining actor design

• Separating actor declaration / private logic with message
handling logic

• Hiding dangerous type casting behind the curtain

• Minimal runtime cost (only an integer comparison)

The Codec Problem

PayloadTypeA

bincode

Vec<u8>

PayloadTypeB

Proto-
buffer

Vec<u8>

The Codec Problem
• Messages could use different codecs

• We are adopting a fast se/de crate: abomonation by Frank McSherry

• Super fast, but quite unsafe

• Do not support HashMaps

• We could use different codecs for different messages

• Important ones with hash maps: Bincode

• Small, not-so-important messages: Abomonation

Specialization (RFC #1210)

• Allows trait impls to overlap with each other

• Allows a default impl of a trait

Specialization
Serde se/de traits

Specialization
Default to serde/bincode

Specialization

• Available on nightly

• #![feature(specialization)]

Tick-based actor system

Handler M1 Handler M2 Handler M3

Service B

Handler M1 Handler M2

Service AService Registry
(Singleton)

Actor Bundle
(Instances)

Actor A1 Actor A2

Actor A3 Actor A4

Handler M1 Handler M1

Handler M1Handler M1

Actor B1 Actor B2

Actor C1 Actor C2

Handler M3 Handler M3

Handler M1Handler M1

Worker 2 (Thread 2, with service registry, actor bundle)

Worker N (Thread N, with service registry, actor bundle)

Worker 1 (Thread 1, with service registry, actor bundle)
Broker

System
Module

Messages

Messages

Messages

Messages

Worker
Module

Messages

Broker 2

Messages

Tick - Why?

• Tick is useful for many use cases

• Game design (logics are executed per frame)

• Dataflow / Stream computation

• Easier logic / waiting / event hook

Future with ticks
• Block tick for specific message

• Create a Stream, with each output, step tick forward by 1

• Maintain a map of each tick’s waits

• If all waits are resolved, return Poll::Ready(messages)

Feature with ticks

• Wait for response

• By setting deadline = 1

• User-defined pre-fetching

• By setting dynamic deadline based on current traffic

Distributed Actor System

• Tick based message system

• Support multiple codecs with specialization

• Use compilation-stable type ids for arbitrary message type
reflection

• We are working on open sourcing this actor framework in
2019

• Alibaba 🧡 Rust

• We are building quite some frameworks with Rust

• Looking forward to be a better participant of the
community in 2019

Thanks for your time

