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This talk is not about

• Details of full featured actor system


• Comparison with other popular actor systems (Actix, etc.)


• Feature introduction of any crate



This talk is about

• How to solve common problems when building an actor 
system in Rust


• Compilation-stable type id 


• Proc macros


• Specialization


• Tick-Based actor system
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The Type-id Problem

• Messages need to be encoded into buffers ( Vec<u8> ) so 
they could be transferred in a network


• How could a receiver actor recover the type information of 
a message?



Give each message payload type a Type Id





Type id

• Type ID needs to be stable across the network, or it could 
lead to decoding error


• We could not use std::any::TypeId


• It generates different type ids with each compilation


• Network could be running software from different 
compilations



Proc Macro to the Rescue

• Get the ident of target struct payload


• Save the ident + id combo to a local file


• Read the file on next compilation to recover the type id





The payload struct we need to assign a unique type id to

Load id from local file



Type Id

• Once we get a stable type id, we could use it to erase / 
recover type information for networking


• T ———(serialization)——— Vec<u8>


• &[u8] ——— (Type Id matching deserialization) ——— T



This is more or less similar to Reflection in Java





You still need to match against all types !



Solve it with proc 
macros (again…)





Need declarations of message types





Using proc macros we get:

• A super clean, self-explaining actor design


• Separating actor declaration / private logic with message 
handling logic


• Hiding dangerous type casting behind the curtain


• Minimal runtime cost (only an integer comparison)



The  Codec Problem
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The Codec Problem
• Messages could use different codecs


• We are adopting a fast se/de crate: abomonation by Frank McSherry


• Super fast, but quite unsafe


• Do not support HashMaps


• We could use different codecs for different messages


• Important ones with hash maps: Bincode


• Small, not-so-important messages: Abomonation



Specialization (RFC #1210)

• Allows trait impls to overlap with each other


• Allows a default impl of a trait



Specialization
Serde se/de traits



Specialization
Default to serde/bincode



Specialization

• Available on nightly


• #![feature(specialization)]



Tick-based actor system
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Tick - Why?

• Tick is useful for many use cases


• Game design ( logics are executed per frame)


• Dataflow / Stream computation


• Easier logic / waiting / event hook



Future with ticks
• Block tick for specific message


• Create a Stream, with each output, step tick forward by 1


• Maintain a map of each tick’s waits


• If all waits are resolved, return Poll::Ready(messages)



Feature with ticks

• Wait for response


• By setting deadline = 1


• User-defined pre-fetching


• By setting dynamic deadline based on current traffic



Distributed Actor System

• Tick based message system


• Support multiple codecs with specialization


• Use compilation-stable type ids for arbitrary message type 
reflection


• We are working on open sourcing this actor framework in 
2019



• Alibaba 🧡  Rust


• We are building quite some frameworks with Rust


• Looking forward to be a better participant of the 
community in 2019



Thanks for your time


