Distributed Actor System in Rust

Zimon Dai

About me

Zimon Dal
Senior Engineer @ Alibaba Inc
Full-time Rust dev since 2016

daizhuoxian@outlook.com

mailto:daizhuoxian@outlook.com

This talk I1s not about

e Detalils of full featured actor system
e Comparison with other popular actor systems (Actix, etc.)

e Feature introduction of any crate

This talk i1s about

e How to solve common problems when building an actor
system in Rust

e Compilation-stable type id
e Proc macros
e Specialization

e [ick-Based actor system

The Type-id Problem

The Type-id Problem

e Messages need to be encoded into buffers (Vec<u8>) so
they could be transferred in a network

e How could a receiver actor recover the type information of
a message”?

Give each message payload type a Type Id

Trait std::any::Any 1.0.0 [-][src]

[+] Show declaration
| -] A type to emulate dynamic typing.

Most types implement Any. However, any type which contains a non- ' static reference does not. See the module-level
documentation for more details.

Required methods

-] fn get_type_id(&self) -> Typeld

3
L $¢ This is a nightly-only experimental API. (get_type_-id

Gets the Typeld of self.

Type id

e [ype ID needs to be stable across the network, or it could
lead to decoding error

e \We could not use std::any:: Typeld
e |t generates different type ids with each compilation

e Network could be running software from different
compilations

Proc Macro to the Rescue

e Get the ident of target struct payload
e Save the ident + id combo to a local file

e Read the file on next compilation to recover the type id

The payload struct we need to assign a unique type id to

Load id from local file

Type Id

e Once we get a stable type id, we could use it to erase /
recover type information for networking

e [———(serialization)——— Vec<u8>

e &Ju8] —— — (Type Id matching deserialization) ——— T

This Is more or less similar to Reflection in Java

= b
LA VY

You still need to match against all types !

Solve it with proc
macros (again...)

Need declarations of message types

Using proc macros we get:

e A super clean, self-explaining actor design

e Separating actor declaration / private logic with message
handling logic

e Hiding dangerous type casting behind the curtain

e Minimal runtime cost (only an integer comparison)

The Codec Problem

The Codec Problem

e Messages could use different codecs

 We are adopting a fast se/de crate: abomonation by Frank McSherry
e Super fast, but quite unsafe
* Do not support HashMaps

 We could use different codecs for different messages
 |mportant ones with hash maps: Bincode

e Small, not-so-important messages: Abomonation

Specialization (RFC #1210)

e Allows trait impls to overlap with each other

e Allows a default impl of a trait

Specialization

Serde se/de traits

/// Data that could be serialized / deserialized to add/erase type information,
/// wrapped in a [Message]

pub trait Payload: Clone ++ UniqueTypeld + 'static {
/// Serialize payload 1INt SUTTEr "OT
fn serialize(&self) -> IoResult<Vec<u8>>;
/// Deserialize from a buffer slice, get a [Cow](std::borrow::Cow) value
/// back
fn deserialize(data: &[u8]) -> Result<Cow<'_, Self>, Error>;

/// Return the serialize buffer size of this payload, this method do NOT
/// do any serialization

fn size(&self) -> IoResult<u64>;

Specialization

impl<T: Clone + Serialize + DeserializeOwned + UniqueTypeld + 'static> Payload for T {

default|fn serialize(&self) -> IoResult<Vec<u8>> ({

Hserstd::erfror: Error.:
bincode: :serialize(&self)
.map_err(|err| std::io::Error::new(std::io::ErrorKind::InvalidInput, err.description()))

// Other impls

impl<T: 'static ++ DeserializeOwned + Serialize + UniqueTypeId + Clone> Payload for T {

fn serialize(&self) -> IoResult<Vec<u8>> ({
let mut result = vec![];
unsafe { abomonation::encode(self, &mut result)? };
Ok(result)

// other impls

Specialization

e Avalilable on nightly

e #llfeature(specialization)]

Worker 1 (Thread 1, with service registry, actor bundle)

Broker 2
-y

8

Messages

a Messages a

Messages

Message

Messages

Tick-based actor system

Tick - Why?

e Tick is useful for many use cases
e (Game design (logics are executed per frame)
e Dataflow / Stream computation

e Easier logic / waiting / event hook

Future with ticks

e Block tick for specific message

pub struct WaitForOnce {
deadline: u64,
message_signhature: MessageSignatur%

}

e Create a Stream, with each output, step tick forward by 1
e Maintain a map of each tick’s waits

e |f all waits are resolved, return Poll::Ready(messages)

Feature with ticks

e Wait for response
e By setting deadline = 1
* User-defined pre-fetching

e By setting dynamic deadline based on current traffic

Distributed Actor System

e Tick based message system
e Support multiple codecs with specialization

e Use compilation-stable type ids for arbitrary message type
reflection

e We are working on open sourcing this actor framework in
2019

e Alibaba ¥ Rust

e We are building quite some frameworks with Rust

e | ooking forward to be a better participant of the
community in 2019

Thanks for your time

